This Week's Sponsor:

Albums

Algorithm-Free Listening for Music Lovers


Posts tagged with "artificial intelligence"

From the Creators of Shortcuts, Sky Extends AI Integration and Automation to Your Entire Mac

Sky for Mac.

Sky for Mac.

Over the course of my career, I’ve had three distinct moments in which I saw a brand-new app and immediately felt it was going to change how I used my computer – and they were all about empowering people to do more with their devices.

I had that feeling the first time I tried Editorial, the scriptable Markdown text editor by Ole Zorn. I knew right away when two young developers told me about their automation app, Workflow, in 2014. And I couldn’t believe it when Apple showed that not only had they acquired Workflow, but they were going to integrate the renamed Shortcuts app system-wide on iOS and iPadOS.

Notably, the same two people – Ari Weinstein and Conrad Kramer – were involved with two of those three moments, first with Workflow, then with Shortcuts. And a couple of weeks ago, I found out that they were going to define my fourth moment, along with their co-founder Kim Beverett at Software Applications Incorporated, with the new app they’ve been working on in secret since 2023 and officially announced today.

For the past two weeks, I’ve been able to use Sky, the new app from the people behind Shortcuts who left Apple two years ago. As soon as I saw a demo, I felt the same way I did about Editorial, Workflow, and Shortcuts: I knew Sky was going to fundamentally change how I think about my macOS workflow and the role of automation in my everyday tasks.

Only this time, because of AI and LLMs, Sky is more intuitive than all those apps and requires a different approach, as I will explain in this exclusive preview story ahead of a full review of the app later this year.

Read more


OpenAI to Buy Jony Ive’s Stealth Startup for $6.5 Billion

Jony Ive’s stealth AI company known as io is being acquired by OpenAI for $6.5 billion in a deal that is expected to close this summer subject to regulatory approvals. According to reporting by Mark Gurman and Shirin Ghaffary of Bloomberg:

The purchase — the largest in OpenAI’s history — will provide the company with a dedicated unit for developing AI-powered devices. Acquiring the secretive startup, named io, also will secure the services of Ive and other former Apple designers who were behind iconic products such as the iPhone.

The partnership builds on a 23% stake in io that OpenAI purchased at the end of last year and comes with what Bloomberg describes as 55 hardware engineers, software developers, and manufacturing experts, plus a cast of accomplished designers.

Ive had this to say about the purportedly novel products he and OpenAI CEO Sam Altman are planning:

“People have an appetite for something new, which is a reflection on a sort of an unease with where we currently are,” Ive said, referring to products available today. Ive and Altman’s first devices are slated to debut in 2026.

Bloomberg also notes that Ive and his team of designers will be taking over all design at OpenAI, including software design like ChatGPT.

For now, the products OpenAI is working on remain a mystery, but given the purchase price and io’s willingness to take its first steps into the spotlight, I expect we’ll be hearing more about this historic collaboration in the months to come.

Permalink

Notes on Early Mac Studio AI Benchmarks with Qwen3-235B-A22B and Qwen2.5-VL-72B

I received a top-of-the-line Mac Studio (M3 Ultra, 512 GB of RAM, 8 TB of storage) on loan from Apple last week, and I thought I’d use this opportunity to revive something I’ve been mulling over for some time: more short-form blogging on MacStories in the form of brief “notes” with a dedicated Notes category on the site. Expect more of these “low-pressure”, quick posts in the future.

I’ve been sent this Mac Studio as part of my ongoing experiments with assistive AI and automation, and one of the things I plan to do over the coming weeks and months is playing around with local LLMs that tap into the power of Apple Silicon and the incredible performance headroom afforded by the M3 Ultra and this computer’s specs. I have a lot to learn when it comes to local AI (my shortcuts and experiments so far have focused on cloud models and the Shortcuts app combined with the LLM CLI), but since I had to start somewhere, I downloaded LM Studio and Ollama, installed the llm-ollama plugin, and began experimenting with open-weights models (served from Hugging Face as well as the Ollama library) both in the GGUF format and Apple’s own MLX framework.

LM Studio.

LM Studio.

I posted some of these early tests on Bluesky. I ran the massive Qwen3-235B-A22B model (a Mixture-of-Experts model with 235 billion parameters, 22 billion of which activated at once) with both GGUF and MLX using the beta version of the LM Studio app, and these were the results:

  • GGUF: 16 tokens/second, ~133 GB of RAM used
  • MLX: 24 tok/sec, ~124 GB RAM

As you can see from these first benchmarks (both based on the 4-bit quant of Qwen3-235B-A22B), the Apple Silicon-optimized version of the model resulted in better performance both for token generation and memory usage. Regardless of the version, the Mac Studio absolutely didn’t care and I could barely hear the fans going.

I also wanted to play around with the new generation of vision models (VLMs) to test modern OCR capabilities of these models. One of the tasks that has become kind of a personal AI eval for me lately is taking a long screenshot of a shortcut from the Shortcuts app (using CleanShot’s scrolling captures) and feed it either as a full-res PNG or PDF to an LLM. As I shared before, due to image compression, the vast majority of cloud LLMs either fail to accept the image as input or compresses the image so much that graphical artifacts lead to severe hallucinations in the text analysis of the image. Only o4-mini-high – thanks to its more agentic capabilities and tool-calling – was able to produce a decent output; even then, that was only possible because o4-mini-high decided to slice the image in multiple parts and iterate through each one with discrete pytesseract calls. The task took almost seven minutes to run in ChatGPT.

This morning, I installed the 72-billion parameter version of Qwen2.5-VL, gave it a full-resolution screenshot of a 40-action shortcut, and let it run with Ollama and llm-ollama. After 3.5 minutes and around 100 GB RAM usage, I got a really good, Markdown-formatted analysis of my shortcut back from the model.

To make the experience nicer, I even built a small local-scanning utility that lets me pick an image from Shortcuts and runs it through Qwen2.5-VL (72B) using the ‘Run Shell Script’ action on macOS. It worked beautifully on my first try. Amusingly, the smaller version of Qwen2.5-VL (32B) thought my photo of ergonomic mice was a “collection of seashells”. Fair enough: there’s a reason bigger models are heavier and costlier to run.

Given my struggles with OCR and document analysis with cloud-hosted models, I’m very excited about the potential of local VLMs that bypass memory constraints thanks to the M3 Ultra and provide accurate results in just a few minutes without having to upload private images or PDFs anywhere. I’ve been writing a lot about this idea of “hybrid automation” that combines traditional Mac scripting tools, Shortcuts, and LLMs to unlock workflows that just weren’t possible before; I feel like the power of this Mac Studio is going to be an amazing accelerator for that.

Next up on my list: understanding how to run MLX models with mlx-lm, investigating long-context models with dual-chunk attention support (looking at you, Qwen 2.5), and experimenting with Gemma 3. Fun times ahead!


Post-Chat UI

Fascinating analysis by Allen Pike on how, beyond traditional chatbot interactions, the technology behind LLMs can be used in other types of user interfaces and interactions:

While chat is powerful, for most products chatting with the underlying LLM should be more of a debug interface – a fallback mode – and not the primary UX.

So, how is AI making our software more useful, if not via chat? Let’s do a tour.

There are plenty of useful, practical examples in the story showing how natural language understanding and processing can be embedded in different features of modern apps. My favorite example is search, as Pike writes:

Another UI convention being reinvented is the search field.

It used to be that finding your flight details in your email required typing something exact, like “air canada confirmation”, and hoping that’s actually the phrasing in the email you’re thinking of.

Now, you should be able to type “what are the flight details for the offsite?” and find what you want.

Having used Shortwave and its AI-powered search for the past few months, I couldn’t agree more. The moment you get used to searching without exact queries or specific operators, there’s no going back.

Experience this once, and products with an old-school text-match search field feel broken. You should be able to just find “tax receipts from registered charities” in your email app, “the file where the login UI is defined” in your IDE, and “my upcoming vacations” in your calendar.

Interestingly, Pike mentions Command-K bars as another interface pattern that can benefit from LLM-infused interactions. I knew that sounded familiar – I covered the topic in mid-November 2022, and I still think it’s a shame that Apple hasn’t natively implemented these anywhere in their apps, especially now that commands can be fuzzier (just consider what Raycast is doing). Funnily enough, that post was published just two weeks before the public debut of ChatGPT on November 30, 2022. That feels like forever ago now.

Permalink

Sundar Pichai Testifies That He Hopes Gemini Will Be Integrated into iPhones This Fall

Ever since Apple announced its deal to integrate ChatGPT into Siri, there have been hints that the company wanted to make deals with other AI providers, too. Alphabet CEO Sundar Pichai has added fuel to the rumors with testimony given today in the remedy phase of the search antitrust case brought against it by the U.S. Department of Justice.

In response to questions by a DOJ prosecutor, Pichai testified that he hoped Google Gemini would be added to iPhones this year. According to a Bloomberg story co-authored by Mark Gurman, Davey Alba, and Leah Nylen:

Pichai said he held a series of conversations with Apple Chief Executive Officer Tim Cook across 2024 and he hopes to have a deal done by the middle of this year.

This news isn’t surprising, but it is welcome. Despite Google’s early stumbles with Bard, its successor, Gemini, has improved by leaps and bounds in recent months and has the advantage of being integrated with many of Google’s other products that have a huge user base. What will be interesting to see is whether Gemini is integrated as an alternative fallback for Siri requests or whether Apple and Google ink a broader deal that integrates Gemini into other aspects of iOS.

Permalink

Sycophancy in GPT-4o

OpenAI found itself in the middle of another controversy earlier this week, only this time it wasn’t about publishers or regulation, but about its core product – ChatGPT. Specifically, after rolling out an update to the default 4o model with improved personality, users started noticing that ChatGPT was adopting highly sycophantic behavior: it weirdly agreed with users on all kinds of prompts, even about topics that would typically warrant some justified pushback from a digital assistant. (Simon Willison and Ethan Mollick have a good roundup of the examples as well as the change in the system prompt that may have caused this.) OpenAI had to roll back the update and explain what happened on the company’s blog:

We have rolled back last week’s GPT‑4o update in ChatGPT so people are now using an earlier version with more balanced behavior. The update we removed was overly flattering or agreeable—often described as sycophantic.

We are actively testing new fixes to address the issue. We’re revising how we collect and incorporate feedback to heavily weight long-term user satisfaction and we’re introducing more personalization features, giving users greater control over how ChatGPT behaves.

And:

We also believe users should have more control over how ChatGPT behaves and, to the extent that it is safe and feasible, make adjustments if they don’t agree with the default behavior.

Today, users can give the model specific instructions to shape its behavior with features like custom instructions. We’re also building new, easier ways for users to do this. For example, users will be able to give real-time feedback to directly influence their interactions and choose from multiple default personalities.

“Easier ways” for users to adjust ChatGPT’s behavior sound to me like a user-friendly toggle or slider to adjust ChatGPT’s personality (Grok has something similar, albeit unhinged), which I think would be a reasonable addition to the product. I’ve long argued that Siri should come with an adjustable personality similar to CARROT Weather, which lets you tweak whether you want the app to be “evil” or “professional” with a slider. I increasingly feel like that sort of option would make a lot of sense for modern LLMs, too.

Permalink

What Siri Isn’t: Perplexity’s Voice Assistant and the Potential of LLMs Integrated with iOS

Perplexity's voice assistant for iOS.

Perplexity’s voice assistant for iOS.

You’ve probably heard that Perplexity – a company whose web scraping tactics I generally despise, and the only AI bot we still block at MacStories – has rolled out an iOS version of their voice assistant that integrates with several native features of the operating system. Here’s their promo video in case you missed it:

This is a very clever idea: while other major LLMs’ voice modes are limited to having a conversation with the chatbot (with the kind of quality and conversation flow that, frankly, annihilates Siri), Perplexity put a different spin on it: they used native Apple APIs and frameworks to make conversations more actionable (some may even say “agentic”) and integrated with the Apple apps you use every day. I’ve seen a lot of people calling Perplexity’s voice assistant “what Siri should be” or arguing that Apple should consider Perplexity as an acquisition target because of this, and I thought I’d share some additional comments and notes after having played with their voice mode for a while.

Read more


How Federico Turns Voice Recordings into Searchable Obsidian Notes with Shortcuts, Hazel, and LLMs

Automation on the Mac is powerful because you have so many choices when building a workflow. Now, with large language models, you can do even more, which is the approach Federico took in his latest Automation Academy lesson for Club MacStories Plus and Premier members:

I built a hybrid automation to bridge spoken words and Markdown – a system that combines the non-deterministic nature of human language and messy voice recordings with the reliability of Shortcuts, the power of Hazel rules on macOS, and the flexibility of LLMs, which are ideal for processing natural language. The system revolves around a shortcut called Process Transcript that takes the raw transcript of a voice recording and turns it into a structured note in Obsidian, complete with a summary, action items, an embedded audio player, and an internal link to the full transcript.

It’s an amazing automation that takes his audio notes, transcribes them into text, structures the results in an Obsidian template that includes extracted tasks, and embeds the original audio file and transcript for reference. Along the way, Federico used Simon Willison’s llm CLI, Google Gemini 2.5 Pro Hazel, Shortcuts, and other tools. It’s a great example of how to make the most of automation on the Mac.


Automation Academy is just one of the many Club MacStories perks.

Automation Academy is just one of the many Club MacStories perks.

Automation Academy is just one of many perks that Club MacStories Plus and Club Premier members enjoy including:

  • Weekly and monthly newsletters 
  • A sophisticated web app with search and filtering tools to navigate eight years of content
  • Customizable RSS feeds
  • Bonus columns
  • An early and ad-free version of our Internet culture and media podcast, MacStories Unwind
  • A vibrant Discord community of smart app and automation fans who trade a wealth of tips and discoveries every day
  • Live Discord audio events after Apple events and at other times of the year

On top of that, Club Premier members get AppStories+, an extended, ad-free version of our flagship podcast that we deliver early every week in high-bitrate audio.

Use the buttons below to learn more and sign up for Club MacStories+ or Club Premier.

Join Club MacStories+:

Join Club Premier:

Permalink

Apple Is Using Differential Privacy to Improve Apple Intelligence

Apple has been using differential privacy for nearly ten years to collect its users data in a way that isn’t traceable back to an individual. As Apple explains in a recent post on its Machine Learning Research site:

This approach works by randomly polling participating devices for whether they’ve seen a particular fragment, and devices respond anonymously with a noisy signal. By noisy, we mean that devices may provide the true signal of whether a fragment was seen or a randomly selected signal for an alternative fragment or no matches at all. By calibrating how often devices send randomly selected responses, we ensure that hundreds of people using the same term are needed before the word can be discoverable.

The company has used the technique to analyze everything from the popularity of emoji to what words to suggest with QuickType.

Now, Apple is using differential privacy to mine the data of users who have opted into sharing device analytics to improve Apple Intelligence. So far, the technique’s use has been limited to improving Genmoji, but in upcoming OS releases, it will be used for “Image Playground, Image Wand, Memories Creation and Writing Tools in Apple Intelligence, as well as in Visual Intelligence,” too.

The report explains that:

Building on our many years of experience using techniques like differential privacy, as well as new techniques like synthetic data generation, we are able to improve Apple Intelligence features while protecting user privacy for users who opt in to the device analytics program. These techniques allow Apple to understand overall trends, without learning information about any individual, like what prompts they use or the content of their emails. As we continue to advance the state of the art in machine learning and AI to enhance our product experiences, we remain committed to developing and implementing cutting-edge techniques to protect user privacy.

For Genmoji, this means collecting data on the most popular prompts used to create the emoji-like images. Apple explains that written content is more challenging but that it can use an LLM to generate synthetic data like emails. The synthetic data is then sent to users’ devices who have opted into device analytics to determine which data matches actual user data most closely and frequently, again using differential privacy to prevent individual device identification.

Using differential privacy to improve Apple Intelligence without directly scraping user data is clever, but it does make me wonder why something similar wasn’t used to generate Apple’s large language models that were trained on the contents of the Internet. Perhaps that’s not possible at the scale of an LLM, or maybe that initial model needs a level of precision that differential privacy doesn’t offer, but I think it’s fair to ask.

Permalink